YOZGAT BOZOK UNIVERSITY FACULTY OF ARTS AND SCIENCES **CHEMISTRY DEPARTMENT COURSE PLAN** | Cours
Code | | Semes
ter | Course
Type
(C/E) | T+A+L
(Time/Week) | Credi
t | ECT
S | Course
Language | | | | |---|---|--|--|----------------------|------------|----------|--------------------|--|--|--| | KİM12 | General Physics II | Spring | C | • | | 4 | Turkish | | | | | | | COURSE | INFORMAT | ION | | | | | | | | (Conte | | concept of el | Electric and magnetic interactions, field and potential concepts, the concept of electric current | | | | | | | | | | m of the Course | | | principles of phy | SICS | | | | | | | | e Level | Bachelor deg | gree | | | | | | | | | Course | e Language | Turkish | | | | | | | | | | Teachi | ing method | (X) Formal | () Online | () Mixed/Hyb | rid | | | | | | | Teachi | ing Staff of the Course | Related Lect | urers | | | | | | | | | Course | uisite Course(s) of the
e
ng Outcomes from the | | | extbooks that co | | | | | | | | Course | e | advanced 2. Use the infapplied, 3. Concepts a interpret, a develop so 4. Access to 5. Use inform | practical support and tools, and other scientific sources to have advanced theoretical and practical knowledge, Use the information gained in the field of advanced theoretical and applied, Concepts and ideas in the field of scientific methods to examine, interpret, and evaluate data, identify problems, analyze them, develop solutions based on scientific evidence, Access to new knowledge in the field of physics and technology, Use information from their own field of physics courses. | | | | | | | | | | | СО | URSE CON | | | | | | | | | Week | Theory | <u> </u> | Pra | Practice/Laboratory | | | | | | | | 1 | Electric Fields | | | | | | | | | | | ^ | Onunala Laur | | | | | | | | | | | 2 | Gauss's Law | 504 | | | | | | | | | | 3 | Gauss's Law | 504 | | | | | | | | | | 3 | Gauss's Law Electric Potential | 506 | | | | | | | | | | 3
4
5 | Gauss's Law Electric Potential Electric Potential | 50% | | | | | | | | | | 3
4
5
6 | Gauss's Law Electric Potential Electric Potential Capacitance and Dielectrics | 50% | | | | | | | | | | 3
4
5
6
7 | Gauss's Law Electric Potential Electric Potential Capacitance and Dielectrics Capacitance and Dielectrics | 50% | | | | | | | | | | 3
4
5
6 | Gauss's Law Electric Potential Electric Potential Capacitance and Dielectrics Capacitance and Dielectrics Current and Resistance | 50% | | | | | | | | | | 3
4
5
6
7 | Gauss's Law Electric Potential Electric Potential Capacitance and Dielectrics Capacitance and Dielectrics Current and Resistance Direct Current Circuits | 500 | | | | | | | | | | 3
4
5
6
7
8
9 | Gauss's Law Electric Potential Electric Potential Capacitance and Dielectrics Capacitance and Dielectrics Current and Resistance Direct Current Circuits Direct Current Circuits | 508 | | | | | | | | | | 3
4
5
6
7
8
9 | Gauss's Law Electric Potential Electric Potential Capacitance and Dielectrics Capacitance and Dielectrics Current and Resistance Direct Current Circuits | | | | | | | | | | | 3
4
5
6
7
8
9 | Gauss's Law Electric Potential Electric Potential Capacitance and Dielectrics Capacitance and Dielectrics Current and Resistance Direct Current Circuits Direct Current Circuits | | | | | | | | | | | 3
4
5
6
7
8
9
10 | Gauss's Law Electric Potential Electric Potential Capacitance and Dielectrics Capacitance and Dielectrics Current and Resistance Direct Current Circuits Direct Current Circuits Magnetic Fields | | | | | | | | | | | 3
4
5
6
7
8
9
10
11 | Gauss's Law Electric Potential Electric Potential Capacitance and Dielectrics Capacitance and Dielectrics Current and Resistance Direct Current Circuits Direct Current Circuits Magnetic Fields Magnetic Fields | | | | | | | | | | - 2. Fundamentals of Physics II (Arkadaş Publishing) | | | ASSESSMI | ENT CRITERIA | | | | | | | | |--|---|--|----------------------|-------------|-------------------------|-------|----------------|----|--|--| | Work Activities During the Semester | | | Number | | Contribution | | | | | | | Homework | | | 1 | | %30 | | | | | | | Practice | e | | · | | | ,,,,, | | | | | | Forum/ | Discussion Application | | | | | | | | | | | Short Exam (Quiz) | | | 2 | | %35 | | | | | | | Ratio Of Semester Studies To Semester Success (% | | r Success (%) | | | %40 | | | | | | | | f Final to Success (%) | | 1 | | | %60 | | | | | | Total | | | | | | %100 | | | | | | | | COURSE WO | RKLOAD TABL | .E | | | | | | | | Activity | у | Total V | | Duration | ation (Weekly
Hours) | | Total Workload | | | | | Theory | | 14 | 4 | 2 | 2 | | 28 | | | | | Practic | | | | | | | | | | | | | / Discussion Application | | | | | | | | | | | Reading | | | 14 | | 2 | | 28 | | | | | Internet Scanning, Library Study | | 14 | 14 | | 2 | | 28 | | | | | | al Design, Application | | | | | | | | | | | | Preparation | | | | | | | | | | | | ntation Preparation | | | | | | | | | | | Presen | | | | | | | | | | | | Final Exam | | 1 | | | 2 | | 2 | | | | | Preparation for the Final Exam | | 2 | 2 | | 7 | | 14 | | | | | | s) (Specify:) | | | | | | | | | | | | Vorkload | | | | | | | | | | | | Vorkload / 25 (s) | | 0 | | | | 100/25 | | | | | | Credits of the Course | | | | | 1 | .00/25≌ | ≘4 | | | | Note: Th | he workload of the course will be o | letermined by the | e instructor on a pe | er-course l | oasis. | | | | | | | | PPOGPAMIA | EARNING OUT | PUTS CONTRIE | RIITION I | EVEL 9 | | | | | | | No | Program Learning Outputs | EARNING OUT | PUIS CONTRIE | 1 | | 3 | 4 | 5 | | | | 1 | Gains extensive knowledge about the basic chemical properties of matter and uses this knowledge in daily life, industrial scale, and practical chemistry and shares them with the society. | | | X | | | | | | | | 2 | Performs experiments, collects data, interprets, evaluates results, defines problems parallel to current technological developments, produces solutions against problems encountered in the laboratory. | | | X | | | | | | | | 3 | Calculates and processes chem | | | | | | | | | | | 4 | Applies her/his knowledge and understanding of chemistry to the solution of unconventional qualitative and quantitative problems. | | | х | | | | | | | | 5 | Defines and comprehends chemical concepts and theories in Inorganic Chemistry, Organic Chemistry, Physical Chemistry, Analytical Chemistry, Biochemistry. | | | × | | | | | | | | 6 | Can conduct research in the light the field of chemistry. | ght of scientific data on any subject in | | | | | | | | | | 7 | a knowledgeable audience. | entific material, and presents it orally to | | | | | | | | | | 8 | | the solution of environmental problems, s and reports. | | | 1 | | 1 | 1 | | | | 9 | Knows a foreign language at a level to read and understand the basic terms and processes of the chemist profession. | X | | | |----|--|---|--|--| | 10 | Can use computer software and information and communication technologies at the level required by the field. | X | | | | 11 | Adapts and transfers the knowledge gained in the field to secondary education. | X | | | | 12 | Apart from the field of chemistry, she/he gains knowledge in different branches of science that she feels close to. | х | | | | 13 | Carries out a study independently, makes group work and gains the awareness of taking responsibility. | х | | | | 14 | They can develop a positive attitude towards lifelong learning and constantly renew their professional knowledge and skills. | х | | | | 15 | Have sufficient awareness of the universality of social rights, social justice, quality culture and protection of cultural values, environmental protection, occupational health and safety. | X | | |