
Academic Editor: Jonathan

Blackledge

Received: 24 January 2025

Revised: 16 February 2025

Accepted: 25 February 2025

Published: 27 February 2025

Citation: Li, C.; Jin, F.; Chen, Y.; Li, Z.;

Uzam, M.; Ma, H. Calculation and

Analysis of Petri Net Reachability

Graphs by a Think-Globally-Act-

Locally Method. Mathematics 2025, 13,

793. https://doi.org/10.3390/

math13050793

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

mathematics

Article

Calculation and Analysis of Petri Net Reachability Graphs by a
Think-Globally-Act-Locally Method
Chengzong Li 1, Fubao Jin 1 , Yufeng Chen 2,*, Zhiwu Li 2 , Murat Uzam 3 and Huimin Ma 4

1 School of Energy and Electrical Engineering, Qinghai University, Xining 810000, China;
2024990016@qhu.edu.cn (C.L.); 2007990034@qhu.edu.cn (F.J.)

2 Institute of Systems Engineering, Macau University of Science and Technology,
Taipa, Macau SAR 999078, China; zwli@must.edu.mo

3 Elektrik-Elektronik Muhendisligi Bolumu, Muhendislik-Mimarlik Fakultesi, Yozgat Bozok Universitesi,
Yozgat 66100, Turkey; murat.uzam@bozok.edu.tr

4 State Grid Qinghai Electric Power Company, UHV Company, Xining 810000, China; huiminma92@126.com
* Correspondence: yfchen@must.edu.mo

Abstract: A think-globally-act-locally (TGAL) technique is proven to be an effective method
to address the state explosion issue for complex discrete event systems modeled with
Petri nets. This paper introduces a TGAL-based method for computing and analyzing
the reachability graph (RG) of Petri net models. Given a net system, the TGAL technique
strategically introduces a global idle place (GIP) to iteratively generate its RG by updating
the token count. At each step, the reachable markings (RMs) and legal markings (LMs)
obtained by the previous iterations are considered to calculate the corresponding states of
the current step. According to the enforced control requirement, a system state is required
to be computed and classified only once during an iterative process. This method only
calculates the necessary number of RMs and reduces computational redundancy, which
minimizes the computational cost. Four typical Petri net models from existing studies are
employed to demonstrate the method.

Keywords: discrete event system; Petri net; reachability graph analysis; think-globally-act-
locally approach

MSC: 93C65

1. Introduction
Discrete event systems (DESs) are event-driven systems with discrete-states that

evolve with the occurrences of discrete events. For DESs, supervisory control techniques
are employed to restrict their behavior to implement the various control requirements [1–4].
As a graphical tool for the effective modeling and investigating of complex systems, Petri
nets play a vital role in the field of supervisory control of DESs. A large number of
supervisory control policies have been proposed for DESs modeled with Petri nets [5–10].

In the context of Petri nets, supervisory control techniques are categorized into
two groups: structural analysis [11,12] and reachability graph (RG) analysis [13]. In general,
structural analysis methods are usually available for certain Petri net models with special
structures, namely, siphons and resource circuits [12]. Unlike structural analysis methods,
an RG analysis approach can enforce the desired control requirement for a generalized net
model. Nevertheless, an RG analysis method has to enumerate and classify all reachable
markings (RMs) of a net system, which grow exponentially with the scale of the system [14].

Mathematics 2025, 13, 793 https://doi.org/10.3390/math13050793

https://doi.org/10.3390/math13050793
https://doi.org/10.3390/math13050793
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0003-3378-8693
https://orcid.org/0000-0003-1547-5503
https://doi.org/10.3390/math13050793
https://www.mdpi.com/article/10.3390/math13050793?type=check_update&version=1

Mathematics 2025, 13, 793 2 of 15

It limits the application of RG analysis methods to complex systems. Consequently, de-
ciding how to completely calculate the RG of large-scale systems becomes the key to the
effective utilization of these methods [15–17].

Generally, the RG calculation depends on three factors: next-state function, iterative
strategies, and variable ordering. In [18], a symbolic method is developed to implicitly
generate the RMs of bounded Petri net systems. By utilizing a binary decision diagram
(BDD), this method compresses a large number of RMs into encoded data with small
structures and accurately manipulates RMs. However, the effectiveness of this method
is highly dependent on the ordering of variables. Furthermore, Chen et al. introduce a
BDD-based technique to generate the RG of a net system [19]. Given a deadlock-free control
specification for a net system, its RMs are classified into two groups: legal markings (LMs)
and illegal markings (ILMs). They first compute the sets of LMs and first-met bad markings
(FBMs), where an FBM is an ILM reached by triggering a transition at an LM. Then, two
minimal covering sets of LMs and FBMs are obtained to compute an optimal supervisor.
As a result, this method is more powerful for generating RGs of complex net models than
those traditional techniques in [18,20,21].

In order to mitigate the state explosion issue, Ma et al. develop a compact representa-
tion of the RG, referred to as a basis RG (BRG) [22]. This method distinguishes between
the transitions of a net system as either implicit or explicit, where the subnet induced by
implicit transitions needs to be acyclic. By only considering explicit transitions, a set of
basis markings is calculated to construct the corresponding BRG, which can efficiently
represent all RMs of a net system. In general, the BRG has a small number of nodes and
arcs since the number of RMs is much larger than that of basis markings. In [23], an effec-
tive methodology is proposed to generate the RMs for a large-sized net system, by using
multi-valued decision diagrams (MDDs). This method can generate the RMs concurrently
and compactly store the set of RMs. Consequently, it is more efficient than the techniques
based on the RG and the BRG.

On the other hand, a think-globally-act-locally (TGAL) technique is developed by
Uzam et al. in [24]. This method strategically designs a global idle place (GIP) to enumerate
the RG of a net system iteratively. The introduction of the GIP will not change any basic
property of the net model. Due to the limitation of the available resources in the GIP, the
corresponding net model has a small number of RMs at each iteration. It is obvious that
this method mitigates the state explosion issue for a complex system. Furthermore, in
order to construct monitors with weighted arcs, a think-globally-act-locally approach with
weighted arcs (TGALW) is proposed in [25]. They transform a Petri net model into a special
form, which has the isomorphic RG to the original net system. In theory, this method has
the same complexity as the TGAL approach in terms of the RG computation.

Similarly, a number of TGAL-based methods for optimal control of a net system are
proposed in [26,27]. At each iteration, these methods generate and analyze the RG of
the corresponding net system. A set of optimal control places is calculated during an
iterative process. Compared with the previous TGAL [24] and TGALW [25] approaches,
these methods guarantee the resulting net system with more RMs. Nevertheless, the
existing TGAL-based approaches suffer from the problem of repeated calculation. First,
the computation of previously derived RMs is reiterated in subsequent iterations. Then,
the analysis of previously classified RMs is reiterated in subsequent iterations. As a
consequence, these methods cause a huge waste of computing power.

This paper introduces a TGAL-based approach to compute and analyze the RG of a
Petri net system. Compared with the previous TGAL-based methods [24–27], the proposed
method calculates and analyzes a minimized number of RMs. This means that this method
is more advantageous in terms of computational cost. Moreover, compared with the

Mathematics 2025, 13, 793 3 of 15

approaches in [24–27], the proposed method takes less time to calculate the RG of a net
model, i.e., its performance is better in terms of computation time. Ultimately, the primary
contributions of this study are presented in the following.

(1) A TGAL-based approach is developed to compute the RG of a net system. At each step,
by considering the previously computed states, the partial RMs of the corresponding
net model are directly obtained. Then, the enabled transitions of the obtained states
are analyzed to generate the remaining RMs of the corresponding net model. It is
obvious that all RMs calculated at the current step are new states. Finally, its complete
RG is derived through iterations. In this case, all nodes of the RG are required to be
enumerated only once during an iteration.

(2) A TGAL-based method is proposed to explore the RG of a net system. The TGAL
method only updates the token count in the GIP at each step, which will not change the
legal performance of a state. The previously obtained LMs are still legal for subsequent
iterations, i.e., analyzing all RMs at the next step is unnecessary. At each iteration,
according to the previously computed LMs, the newly generated states are classified.
Finally, the complete RG of the net system is analyzed iteratively.

The remainder of this paper is structured as follows. In Section 2, a TGAL-based
policy is provided to generate and analyze the RG of a Petri net system. Section 3 presents
several net systems to demonstrate the proposed technique. Ultimately, Section 4 provides
a summary of this work and outlines potential directions for future research. Appendix A
provides a descriptionof Petri nets [28] and an analysis of the RG [27].

2. Computation and Analysis of an RG
This section proposes a TGAL-based method to generate and classify the RMs of a Petri

net model. Given a net system (N, M0), the TGAL approach introduces a GIP p̂ into the net
system (N, M0), where N = (P0 ∪ PA ∪ PR, T, F, W). The net system with p̂ is represented
as (N′, Mb

0), where N′ = (P0 ∪ PA ∪ PR ∪ { p̂}, T, F, W), Mb
0(p̂) = b (1 ≤ b ≤ ∑p∈P0 M0(p)),

and for all p ∈ P0 ∪ PA ∪ PR, Mb
0(p) = M0(p). Initially, the GIP p̂ has one token, i.e., a net

(N′, M1
0) is generated to calculate its RG. Next, one token adds to p̂ to analyze a net model

(N′, M2
0). This iterative process continues until the number of RMs does not change by

increasing tokens in p̂. In such a case, all RMs of the net system (N, M0) are enumerated
iteratively. Suppose that M and M′ are RMs for (N′, Ma

0) and (N′, Mb
0), respectively, where

a ̸= b. For markings M and M′, the following definition is obtained.

Definition 1. Let (N′, Ma
0) and (N′, Mb

0) be two net systems, and M and M′ be two RMs
for (N′, Ma

0) and (N′, Mb
0), respectively, where a ̸= b. Markings M and M′ are referred to as

N-identical if for all p ∈ P0 ∪ PA ∪ PR, M(p) = M′(p) holds, which is represented as M =N M′.

By Definition 1, M(p̂) ̸= M′(p̂) and M(p) = M′(p) are obtained if M and M′ are
N-identical markings, where p ∈ P0 ∪ PA ∪ PR. Obviously, markings M and M′ signify the
same state of a system. In such a case, M and M′ are required to be computed only once
during an iteration. If M′ has already been obtained, M is generated by only changing the
token count in p̂. In this case, the partial RMs of the net (N′, Mb

0) are yielded directly if all
markings of the net (N′, Mb−1

0) are known, where 2 ≤ b ≤ ∑p∈P0 M0(p).

Example 1. We assume M = p4 + p7 and M′ = p4 + p7 + p̂ to be two RMs obtained during an
iteration. By Definition 1, M and M′ are N-identical markings due to M =N M′. In this case, M′

can be computed by only increasing the token count in p̂ for M. Markings M and M′ correspond to
the same state of a system.

Mathematics 2025, 13, 793 4 of 15

Then, the RMs of (N′, Mb−1
0) are analyzed to further calculate the RMs of the next

step, namely, a net (N′, Mb
0), where 2 ≤ b ≤ ∑p∈P0 M0(p). Suppose that M is an RM that

is computed in the (b − 1)-th iteration and the enabled transition at M is t. In the b-th
iteration, transition t may be enabled at M′, where M and M′ denote N-identical markings
and M′(p̂) = M(p̂) + 1. In this case, firing t at M′ yields an RM, which must be a new
state of the system obtained at the b-th step. Consequently, the newly enabled transitions
are considered to compute a set of RMs in the b-th iteration. We use EM to represent
the set of transitions enabled at marking M, defined as EM = {t ∈ T|M[t⟩}. Assume
that R(N′, Mb−1

0) is the set of RMs for (N′, Mb−1
0) and EM represents the set of enabled

transitions, where M ∈ R(N′, Mb−1
0). Algorithm 1 presents a TGAL-based approach to

generate the RMs of a net system (N′, Mb
0).

Algorithm 1 Computation of RMs for a net model (N′, Mb
0)

Input: A net model (N′, Mb
0), a set of RMs R(N′, Mb−1

0), and a set of enabled transitions
EM, where M ∈ R(N′, Mb−1

0) and 2 ≤ b ≤ ∑p∈P0 M0(p).
Output: A set of RMs R(N′, Mb

0).
1: for each {M ∈ R(N′, Mb−1

0)} do
2: M′ := M.
3: M′(p̂) := M(p̂) + 1.
4: R(N′, Mb

0) := R(N′, Mb
0) ∪ {M′}.

5: Compute the set of enabled transitions EM′ .
6: E ′

M′ := EM′\EM.
7: M := ∅.
8: for each {M ∈ R(N′, Mb

0)} do
9: for each {t ∈ E ′

M} do
10: M′ := M + [N′](·, t).
11: if {M′ /∈ R(N′, Mb

0)} do
12: M := M∪{M′}.
13: R(N′, Mb

0) := R(N′, Mb
0) ∪M.

14: for each {M ∈ M} do
15: Compute the set of enabled transitions EM.
16: for each {t ∈ EM} do
17: M′ := M + [N′](·, t).
18: if {M′ /∈ R(N′, Mb

0)} do
19: R(N′, Mb

0) := R(N′, Mb
0) ∪ {M′}.

20: Output R(N′, Mb
0).

21: End.

In Algorithm 1, a part of RMs for the net (N′, Mb
0) (2 ≤ b ≤ ∑p∈P0 M0(p)) can be

directly obtained by considering the markings in R(N′, Mb−1
0), that is, the token count in

the GIP p̂ is increased by one for a marking in R(N′, Mb−1
0). Then, the remaining RMs

of (N′, Mb
0) are computed by utilizing the previously generated markings. Finally, we

enumerate all RMs in R(N′, Mb
0).

Example 2. A net system depicted in Figure 1 is considered. By introducing a GIP p̂, the
corresponding net (N′, Mb

0) shown in Figure 2 is constructed, where b represents the token count
in p̂. When b = 1, we derive a net system (N′, M1

0). There is a marking M = 3p1 + p2 + 4p5 +

2p9 + p10 + 3p11 for (N′, M1
0). At M, we have the set of enabled transitions EM = {t2}. By

Algorithm 1, an RM M′ = 3p1 + p2 + 4p5 + 2p9 + p10 + 3p11 + p̂ is generated directly for a net
system (N′, M2

0) (i.e., b = 2). Similarly, at M′, EM′ = {t2, t5} is calculated. We have E ′
M′ =

EM′\EM = {t5}. It is clear that firing t5 at M′ generates a new marking M′′ = 3p1 + p2 + 3p5 +

p6 + 2p9 + p10. Meanwhile, by analyzing M′′, an RM M′′′ = 3p1 + p2 + 3p5 + p7 + 2p9 + 3p11

is obtained for (N′, M2
0). Finally, this method enumerates all RMs of (N′, M2

0).

Mathematics 2025, 13, 793 5 of 15

4p

2p

2t
1p

8t

7t

6t

5t4t

3t

7p

6p

3p
10p

9p

8p

4

6

11p

1t

4

5p

2

5

3

5

3

4

4

Figure 1. A net system from [14].

p̂

4p

2p

2t

1p

8t

7t

6t

5t

3t

7p

6p

3p

10p

9p

8p6

11p

4

1t

5p

4t

4

2

4

5

5

b

3

3

Figure 2. A net system (N′, Mb
0).

For an optimal control requirement, the RMs in R(N′, Mb
0) are required to be classified

into LMs and ILMs. We suppose M and M′ to be two N-identical markings for (N′, Ma
0)

and (N′, Mb
0), respectively, where a ̸= b. According to Definition 1, M and M′ represent

the same state of a system. At each iteration, the control requirement of the system will not
be changed over time. The legality of marking M is independent of the token count in the
GIP p̂. We only need to analyze M for (N′, Ma

0) to determine whether M′ is legal or not for
(N′, Mb

0). As a consequence, at each iteration, the sets of LMs and ILMs can be computed
by considering the previously partitioned states. The following propositions are obtained.

Proposition 1. Let M and M′ be two N-identical markings for (N′, Ma
0) and (N′, Mb

0), respec-
tively, where a ̸= b. Then, M is legal (resp. illegal) for (N′, Ma

0) if and only if M′ is an LM (resp.
an ILM) for (N′, Mb

0).

Proof. Given a net system (N, M0), a net model (N′, Mb
0) is constructed by adding a GIP p̂,

where b represents the token count in p̂. We suppose M and M′ to be N-identical markings
for (N′, Ma

0) and (N′, Mb
0), respectively, where a ̸= b. According to Definition 1, M and

M′ denote the same marking M̂ of the net system (N, M0). Given a control specification,
marking M̂ has only two cases: legal and illegal. Compared with M̂, markings M and M′

have a different number of tokens in p̂. Nevertheless, only changing the token count in p̂
will not lead to the reallocation of the system resources. This means that M and M′ are LMs
(resp. ILMs) for (N′, Ma

0) and (N′, Mb
0), respectively, if and only if M̂ is legal (resp. illegal)

for (N, M0). In this case, whether M is legal for (N′, Ma
0) can be directly determined by

Mathematics 2025, 13, 793 6 of 15

checking M′ for (N′, Mb
0). That is to say, M is legal (resp. illegal) for (N′, Ma

0) if and only if
M′ is an LM (resp. an ILM) for (N′, Mb

0). Finally, the conclusion is true.

Proposition 2. A marking M′ is legal if there is an LM M such that M′[σ⟩M holds, where σ is a
transition sequence.

Proof. Since M is an LM, there is at least a transition sequence σ′ from M to the initial
marking M0. Suppose that there is a transition sequence σ′′ such that M′[σ′′⟩M holds. In
such a case, we have M′[σ′′⟩M[σ′⟩M0 and M′[σ⟩M0, where σ = σ′σ′′. By the definition of
LMs, marking M′ is legal, which completes the proof.

Suppose that R(N′, Mb
0) is a set of RMs for the net (N′, Mb

0) and MLb−1 is a set of LMs
for the net (N′, Mb−1

0), where 2 ≤ b ≤ ∑p∈P0 M0(p). According to Propositions 1 and 2,
Algorithm 2 is proposed to calculate LMs and ILMs of a net system (N′, Mb

0).

Algorithm 2 Calculation of LMs and ILMs for a net model (N′, Mb
0)

Input: A net model (N′, Mb
0), a set of RMs R(N′, Mb

0), and a set of LMs MLb−1 .
Output: A set of LMs MLb and a set of ILMs MLb

.
1: for each {M ∈ MLb−1 } do
2: M′ := M.
3: M′(p̂) := M′(p̂) + 1.
4: MLb := MLb ∪ {M′}.
5: M := R(N′, Mb

0)\MLb .
6: for each {M ∈ M} do
7: if {a marking M′ ∈ R(N′, M) that satisfies M′ ∈ MLb } do
8: MLb := MLb ∪ {M}.
9: MLb

:= R(N′, Mb
0)\MLb .

10: Output MLb and MLb
.

11: End.

By considering the states in MLb−1 , Algorithm 2 first computes a part of the LMs
and adds them into the set MLb . Then, M := R(N′, Mb

0)\MLb is obtained. A marking
M ∈ M is selected to determine whether it is legal or not, if a marking M′ ∈ MLb

that meets M[σ⟩M′, M is an LM and MLb := MLb ∪ {M} is obtained, where σ is a
transition sequence. By analyzing each marking in M, a set of LMs MLb is figured
out from R(N′, Mb

0). Meanwhile, a set of ILMs for the net (N′, Mb
0) is computed with

MLb
:= R(N′, Mb

0)\MLb .

Example 3. Continue to consider the net system (N′, Mb
0) depicted in Figure 2. When b = 1,

a net system (N′, M1
0) is obtained, which has an LM M = 3p1 + p3 + 4p5 + 6p9 + 2p11. By

Algorithm 2, M′ = 3p1 + p3 + 4p5 + 6p9 + 2p11 + p̂ is an LM for a net system (N′, M2
0)

(namely, b = 2). At the same time, marking M′′ = 2p1 + p3 + p4 + 4p5 + 6p9 is legal since there
is transition t4 such that M′′[t4⟩M′ holds. Finally, this method partitions the RMs for (N′, M2

0)

into a set of LMs and a set of ILMs.

Finally, a TGAL-based technique is introduced to generate and classify the RMs for a
Petri net model, as presented in Algorithm 3.

Algorithm 3 first constructs a GIP p̂ for a net system (N, M0) and denotes the corre-
sponding net as (N′, Mb

0), where b (1 ≤ b ≤ ∑p∈P0 M0(p)) represents the token count in p̂.
Initially, the token count in p̂ is one, namely, b = 1. For a net system (N′, M1

0), we calculate
the set of RMs R(N′, M1

0). According to the control requirement, the markings in R(N′, M1
0)

are considered to derive a set of LMs ML1 and a set of ILMs ML1
. Then, one token adds

Mathematics 2025, 13, 793 7 of 15

to p̂, i.e., a net (N′, M2
0) (b = 2) is generated. By the markings in R(N′, M1

0), Algorithm 1
computes the set of RMs for (N′, M2

0). Meanwhile, based on the LMs in ML1 , the sets of
LMs and ILMs for (N′, M2

0) are calculated utilizing Algorithm 2. We terminate this process
if the number of RMs does not grow with the increase in the tokens in p̂. Finally, the sets of
RMs, LMs, and ILMs for the original net system are obtained iteratively.

Algorithm 3 Analysis of RG for a net system

Input: A net system (N, M0), where N = (P0 ∪ PA ∪ PR, T, F, W).
Output: A set of RMs R(N, M0), a set of LMs ML, and a set of ILMs ML.

1: Construct a GIP p̂ with p̂• := P0•, •p̂ := •P0, and M0(p̂) := b. /* b denotes the token
count in p̂. */

2: Add the GIP p̂ to the original net (N, M0), which is defined as (N′, Mb
0).

3: b := 1 and R(N′, M1
0) := {M0}.

4: for each {M ∈ R(N′, M1
0)} do

5: Compute the set of enabled transitions EM.
6: for each {t ∈ EM} do
7: M′ := M + [N′](·, t).
8: if {M′ /∈ R(N′, M1

0)} do
9: R(N′, M1

0) := R(N′, M1
0) ∪ {M′}.

10: R(N, M0) := R(N, M0) ∪ R(N′, M1
0).

11: Derive the sets of LMs ML1 and ILMs ML1
from R(N′, M1

0).
12: ML := ML ∪ML1 .
13: ML := ML ∪ML1

.
14: b := b + 1.
15: while {b ≤ ∑p∈P0 M0(p)} do
16: Obtain the set of RMs R(N′, Mb

0) by Algorithm 1.
17: Calculate the set of LMs MLb and the set of ILMs MLb

for (N′, Mb
0)

by Algorithm 2.
18: ML := ML ∪MLb .
19: ML := ML ∪MLb

.
20: R(N, M0) := R(N, M0) ∪ R(N′, Mb

0).
21: b ++.
22: Output R(N, M0), ML, and ML.
23: End.

Next, the complexity of Algorithm 3 is reviewed. This approach is still necessary
to enumerate all of the RMs of a system. It is obvious that the number of RMs increases
exponentially as the scale of the net system grows, i.e., the proposed method exhibits
exponential complexity in theory. Nevertheless, this method can effectively alleviate the
state explosion issue, as only a small number of new RMs are generated at each iteration.
Compared with the previous TGAL-based methods [24–27], it greatly reduces the repeated
calculations of a marking, that is, each marking of the system needs to be computed and
classified only once. Consequently, it has more advantages in terms of computation time.

Example 4. We continue to analyze the net system depicted in Figure 1. By Algorithm 3, a set of
RMs is computed iteratively, which contains 18 markings. Then, the RMs are partitioned into LMs
and ILMs. Table 1 presents iteration steps, where the first column indicates the iteration count and
the second column is the RM count computed at the b-th step. The counts of LMs and ILMs are
given in the third and fourth columns, respectively, and the last column signifies the calculation
time. Since the net system only has 18 RMs, the computation time of each step is close to zero
seconds. Figure 3 shows the obtained RG, where M0, M1, M2, M3, M5, M7, and M10 are generated
at the first iteration (namely, b = 1). When b = 2, M4, M6, M8, M9, M11, M13, M14, and M15

Mathematics 2025, 13, 793 8 of 15

are computed. At the third step (i.e., b = 3), we obtain markings M12, M16, and M17. Table 2 gives
the details of RMs in the RG.

Table 1. Iteration steps of the net system depicted in Figure 1.

b RMs ILMs LMs Time

1 7 7 <0.1 s
2 8 2 6 <0.1 s
3 3 1 2 <0.1 s

total 18 3 15 <0.3 s

8t
7t

4t

2t 6t

1t 5t

4t

4t

8t

8t

8t

2t
1t 5t 1t

7t 5t

6t

4t
3t

1t 1t5t

1t
6t

1t
5t

5t1t
0M

1M 2M

3M 4M 5M

6M 7M 8M 9M 10M

11M 12M 13M

14M 15M

16M 17M

Figure 3. RG of the net shown in Figure 1.

Table 2. RMs of the net system shown in Figure 1.

M0 = 4p1 + 4p5 + 6p9 + p10 + 3p11 M1 = 3p1 + p2 + 4p5 + 2p9 + p10 + 3p11
M2 = 4p1 + 3p5 + p6 + 6p9 + p10 M3 = 3p1 + p3 + 4p5 + 6p9 + 2p11

M4 = 3p1 + p2 + 3p5 + p6 + 2p9 + p10 M5 = 4p1 + 3p5 + p7 + 6p9 + 3p11
M6 = 2p1 + p2 + p3 + 4p5 + 2p9 + 2p11 M7 = 3p1 + p4 + 4p5 + 6p9 + p10 + p11
M8 = 3p1 + p2 + 3p5 + p7 + 2p9 + 3p11 M9 = 4p1 + 2p5 + p6 + p7 + 6p9
M10 = 4p1 + 3p5 + p8 + p9 + p10 + 3p11 M11 = 2p1 + p2 + p4 + 4p5 + 2p9 + p10 + p11
M12 = 3p1 + p2 + 2p5 + p6 + p7 + 2p9 M13 = 4p1 + 2p5 + p6 + p8 + p9 + p10

M14 = 2p1 + p3 + p4 + 4p5 + 6p9 M15 = 4p1 + 2p5 + p7 + p8 + p9 + 3p11
M16 = p1 + p2 + p3 + p4 + 4p5 + 2p9 M17 = 4p1 + p5 + p6 + p7 + p8 + p9

3. Examples
In this section, we utilize some typical net systems of FMSs to demonstrate the proposed

method. We design C++ programs to generate the sets of RMs, LMs, and ILMs for a net model.
In this work, all of the computations for these examples were performed on a computer
running Windows 11, equipped with an Intel Core 2.8 GHz CPU and 16GB of memory.

First, a net system depicted in Figure 4 is selected, which is from the literature [29].
This net system contains 26,750 RMs, of which 21,581 and 5169 are LMs and ILMs,

respectively. We utilize the proposed technique to compute the RG of this net system. In
Table 3, the details of the iteration steps are presented. Table 4 compares the performance of
the several algorithms applied for this net system. From the perspective of space complexity
analysis, compared with the approaches in [24,26], our method only computes 19.5% and
18.6% of the total number of RMs and LMs, respectively. This means that this method does
not involve the repeated enumeration and analysis of a system state. From the perspective
of time complexity analysis, compared with the techniques in [24,26], this method can save

Mathematics 2025, 13, 793 9 of 15

70.0% and 24.7% of the time cost, respectively. That is to say, it performs better than the
methods in [24,26].

13t

23p

18t

17t

16t

15t

14t

4p

2p

2t

1p

8t

7t

6t

5t

4t

3t

17p

16p

14p

13p

12p

15p

25p

7p

6p

3p

24p

10p

9p

8p

12t

11t

10t

9t

11p

2

11

7

2

2

1t

26p

5p

18p

20p

19p

19t

20t

21p

22p

Figure 4. A net system from [29].

Table 3. Iteration steps of the net system depicted in Figure 4.

b RMs ILMs LMs Time

1 17 17 <0.1 s
2 115 115 <0.1 s
3 505 5 500 <0.1 s
4 1520 48 1472 1.4 s
5 3303 217 3086 8.1 s
6 5289 601 4688 25.3 s
7 6241 1106 5135 54.2 s
8 5322 1363 3959 89.6 s
9 3128 1120 2008 95.2 s

10 1128 583 545 58.5 s
11 182 126 56 36.2 s

total 26,570 5169 21,581 <368.8 s

Table 4. Performance comparison of different methods.

Parameters [24] [26] Proposed Method

No. RMs 137,212 137,212 26,750
No. LMs 116,024 116,024 21,581

Time <489.7 s <1230.6 s <368.8 s

Then, a net system from [25], depicted in Figure 5, is employed to demonstrate this
technique. This net system has 54,869 RMs, including 51,506 LMs and 3363 ILMs. Table 5
presents the iteration steps of the proposed method. Table 6 provides a comparative
analysis of the performance of different techniques for this net system. In terms of space
complexity, compared with the methods in [24,26], the number of RMs and LMs are reduced
by 296,657 and 277,205, respectively. In terms of time complexity, it only takes 9.0% of the

Mathematics 2025, 13, 793 10 of 15

computation time used by the approach in [26]. Meanwhile, this method saves 177.0 s to
generate its RG compared with the approach in [24].

11p

9t

12t

22p
8p

7p

5p

2

2

2
1t

2t

3

5

3

3
3

3

1p

8t

7t6t

5t

4t

3t

6p

3p

10p

9p

11t

10t

2p

4p

13t

14t
21p

23p

31p 32p

Figure 5. A net system from [25].

Table 5. Iteration steps of the net system depicted in Figure 5.

b RMs ILMs LMs Time

1 12 12 <0.1 s
2 55 1 54 <0.1 s
3 194 8 186 <0.1 s
4 545 30 515 <0.1 s
5 1276 80 1196 1.5 s
6 2573 174 2399 2.4 s
7 4522 314 4208 4.4 s
8 6905 489 6416 14.8 s
9 9066 650 8416 32.7 s

10 10,028 713 9315 75.6 s
11 9022 577 8445 115.3 s
12 6326 285 6041 117.2 s
13 3202 42 3160 125.9 s
14 1017 1017 127.3 s
15 126 126 119.6 s

total 54,869 3363 51,506 <737.1 s

Table 6. Performance comparison of different methods.

Parameters [24] [26] Proposed Method

No. RMs 351,526 351,526 54,869
No. LMs 328,711 328,711 51,506

Time <914.1 s <8174.9 s <737.1 s

We continue to use the net system shown in Figure 6 to test the proposed approach,
which has 68,531 RMs. According to the deadlock-free control specification, the numbers
of LMs and ILMs are 66,400 and 2131, respectively. By introducing a GIP, the proposed

Mathematics 2025, 13, 793 11 of 15

method generates its RG iteratively, and Table 7 presents the iteration steps. Table 8 gives a
comparative analysis of the performance of different algorithms applied to this net system.
Similarly, the space complexity of this method is lower, i.e., the proposed method only
requires calculating 18.6% of the RMs and 18.5% of the LMs compared with the techniques
in [24,26]. In terms of time complexity, compared with the approaches in [24,26], it saves
8,792.3 s and 103.8 s, respectively. Consequently, the performance of those in [24,26] is poor
compared with the proposed method.

11p

26p

2t

1p

27p

2

2

8t

7t

6t

5t

4t

3t

17p

16p

14p

13p

12p

15p

25p

7p

6p

3p

24p

18p

10p

9p

8p

12t

11t

10t

9t

3
410

9

2

2

2

3

3

1t

2p

4p

22p

23p

13t

14t

15t

16t

17t

18t

Figure 6. A net system from [25].

Table 7. Iteration steps of the net system depicted in Figure 6.

b RMs ILMs LMs Time

1 15 15 <0.1 s
2 102 102 <0.1 s
3 501 501 <0.1 s
4 1780 1 1779 1.5 s
5 4749 11 4738 4.1 s
6 9555 55 9500 23.3 s
7 14,432 188 14,244 74.4 s
8 15,993 405 15,588 173.7 s
9 12,607 600 12,007 216.9 s

10 6598 587 6011 144.0 s
11 1947 251 1696 146.8 s
12 252 33 219 140.1 s

total 68,531 2131 66,400 <925.1 s

Table 8. Performance comparison of different methods.

Parameters [24] [26] Proposed Method

No. RMs 368,134 368,134 68,531
No. LMs 359,803 359,803 66,400

Time <1028.9 s <9717.4 s <925.1 s

Finally, we select a net system depicted in Figure 7 to illustrate this method. This net
system has 316,228 RMs, 308,790 and 7438 of which are LMs and ILMs, respectively (see
Table 9). By employing this technique, Table 7 gives the details of the iteration steps. In
Table 10, a comparative analysis of the performance of several approaches implemented

Mathematics 2025, 13, 793 12 of 15

on the net system shown in Figure 7 is presented. Our method demonstrates significantly
lower space complexity compared with the approaches in [24,26], i.e., only 15.3% of the RMs
and 15.2% of the LMs are calculated. In terms of computation time, it saves 139,157.2 s and
854.9 s compared with the techniques in [24,26], respectively. Obviously, the performance
of this method outperforms the approaches in [24,26].

11p

26p

2t

1p

27p

2

2

8t

7t

6t

5t

4t

3t

17p

16p

14p

13p

12p

15p

25p

7p

6p

3p

24p

18p

10p

9p

8p

12t

11t

10t

9t

3
1010

10

3

3

3

3

3

1t

2p

4p

22p

23p

13t

14t

15t

16t

17t

18t

Figure 7. A Petri net model.

Table 9. Iteration steps of the net depicted in Figure 7.

b RMs ILMs LMs Time

1 15 15 <0.1 s
2 102 102 <0.1 s
3 518 518 <0.1 s
4 1975 1975 1.2 s
5 5912 5912 6.3 s
6 14,306 9 14,297 36.7 s
7 28,190 60 28,130 201.5 s
8 45,382 233 45,149 940.3 s
9 59,410 653 58,757 2041.7 s

10 62,068 1246 60,822 2240.2 s
11 50,452 1766 48,686 2629.9 s
12 30,791 1832 28,959 2385.6 s
13 13,199 1167 12,032 2238.3 s
14 3509 416 3093 1670.2 s
15 399 56 343 1373.3 s

total 316,228 7438 308,790 <15,765.5 s

Table 10. Performance comparison of different methods.

Parameters [24] [26] Proposed Method

No. RMs 2,067,661 2,067,661 316,228
No. LMs 2,032,573 2,032,573 308,790

Time <16,620.4 s <154,922.7 s <15,765.5 s

Mathematics 2025, 13, 793 13 of 15

4. Conclusions
This paper introduces a TGAL-based approach to calculate and analyze the RG of

Petri net models. Given a generalized net system, this method systematically generates
its RG through the introduction of a GIP. At each iteration, the previously obtained states
are selected to compute and classify the RMs of the current step. During an iterative
process, a system state is required to be computed and analyzed only once. In terms of
time complexity and space complexity, this approach outperforms the techniques in [24,26].
In particular, it has more advantages in terms of computation time than our previous
algorithms in [26,27]. Furthermore, compared with the techniques in [13,14], the proposed
method has an advantage in terms of space complexity since RMs are partially generated at
each iteration step. Consequently, this method is more advantageous than the approaches
in [13,14] to compute the RG of a large-scale net system. Nevertheless, the proposed method
also exhibits a drawback, i.e., it involves frequently reading and writing a large number
of states at each iteration. One of our future research directions is to consider improving
the state storage method to enhance the efficiency of the algorithm for complex systems.
Another is to extend the proposed method to other types of Petri nets, such as time Petri
nets, colored Petri nets, and object Petri nets.

Author Contributions: Conceptualization, C.L., Y.C. and M.U.; methodology, C.L., Y.C. and Z.L.;
software, C.L. and H.M.; validation, F.J.; data curation, C.L.; writing—original draft preparation, C.L.
and Y.C.; and writing—review and editing, C.L., Y.C. and Z.L. All authors have read and agreed to
the published version of the manuscript.

Funding: This work was supported in part by the Qinghai University Research Ability Enhance-
ment Project under Grant 2025KTSQ28; in part by the Science and Technology Development Fund,
MSAR, under Grants 0029/2023/RIA1 and 0029/2022/AGJ; in part by the Program of Guang-
dong under Grant 2023A0505020003; and in part by the School-Enterprise Joint Project (Design
and Research of Integrated Photovoltaic Storage and Charging Microgrid System) under Grant
SGQHXNFSNYJS2400216.

Data Availability Statement: Data will be made available on request.

Conflicts of Interest: Author Huimin Ma was employed by the company State Grid Qinghai Electric
Power Company, UHV Company. The remaining authors declare that the research was conducted
in the absence of any commercial or financial relationships that could be construed as a potential
conflict of interest.

Appendix A. Preliminaries
This appendix outlines the basics of Petri nets [28] and provides an analysis of the

RG [29].

Appendix A.1. Petri Nets

A Petri net [28] is a quadruple N = (P, T, F, W), where P and T are finite and non-
empty sets of places and transitions, respectively. The flow relation of a net is represented
by arcs with arrows from places to transitions or from transitions to places, denoted as
F ⊆ (P × T) ∪ (T × P). W : (P × T) ∪ (T × P) → N is a mapping that assigns a weight
to an arc: W(x, y) > 0 if (x, y) ∈ F, and W(x, y) = 0 otherwise, where x, y ∈ P ∪ T and N
comprise the set of non-negative integers. The preset and postset of a node x ∈ P ∪ T are
•x = {y ∈ P ∪ T | (y, x) ∈ F} and x• = {y ∈ P ∪ T | (x, y) ∈ F}, respectively. Furthermore,
the preset and postset of a set X ⊆ P ∪ T are •X = {y ∈ P ∪ T | y ∈ •x ∧ x ∈ X} and
X• = {y ∈ P ∪ T | y ∈ x• ∧ x ∈ X}, respectively. A marking represents a mapping
M : P → N. The number of tokens in place p at marking M is denoted as M(p). Generally,
marking M can be written as ∑p∈P M(p)p. The pair (N, M0) is called a marked Petri

Mathematics 2025, 13, 793 14 of 15

net or a net system. Incidence matrix [N] of net N is a |P| × |T| integer matrix with
[N](p, t) = W(t, p)− W(p, t).

A transition t ∈ T is enabled at marking M if for all p ∈ •t, M(p) ≥ W(p, t). This fact
is denoted as M[t⟩. Once a transition t fires, it yields a marking M′, denoted as M[t⟩M′,
where M′(p) = M(p)− W(p, t) + W(t, p), for all p ∈ P. Marking M′′ is said to be an RM
from M′ if there is a sequence of transitions σ = t1t2 · · · tn such that M′[σ⟩M′′ holds. M0[⟩
is called the set of RMs of a net model N from the initial marking M0, often denoted by
R(N, M0). An RG is a graphical representation of R(N, M0), whose nodes are markings in
R(N, M0) and whose arcs are labeled by the transitions of N, denoted as G(N, M0).

Let (N, M0) be a net system with N = (P, T, F, W). A transition t ∈ T is live at M0 if
for all M ∈ R(N, M0), there is M′ ∈ R(N, M) such that M′[t⟩ holds. (N, M0) is live if for all
t ∈ T, t is live at M0. It is dead at M0 if there is not a transition t ∈ T such that M0[t⟩ holds.

Appendix A.2. Analysis of Reachability Graph

In [27], a manufacturing-oriented Petri net (M-net for short) is introduced, which is
a generalization of the models for flexible manufacturing systems (FMSs). In an M-net,
places can be partitioned into three types: idle, operation (activity), and resource places,
whose sets are denoted as P0, PA, and PR, respectively. An idle place represents a raw part
before entering a production sequence. The token count in an idle place denotes the number
of concurrent operations that can happen in the production sequences. An operation place
means an operation to be processed for a part in a production sequence, and initially it
has no token. A resource place signifies types of available resources, such as robots and
machines. In the initial state, tokens in a resource place are equal to the number of available
resource units.

Given a deadlock-free control specification for a net model (N, M0), a marking is legal
if its successor can go back to the initial marking; otherwise, it is an ILM. The set of LMs,
denoted as ML, is defined as

ML = {M ∈ R(N, M0)|M0 ∈ R(N, M)}.

Meanwhile, the set of ILMs, denoted as ML, is defined as

ML = R(N, M0)\ML.

References
1. Coffman, E.G.; Elphick, M.J.; Shoshani, A. Systems deadlocks. ACM Comput. Surv. 1971, 3, 67–78. [CrossRef]
2. Yamalidou, K.; Moody, J.; Lemmon, M.; Antsaklis, P. Feedback control of Petri nets based on place invariants. Automatica 1996, 32,

15–28. [CrossRef]
3. Tricas, F.; Garcia-Valles, F.; Colom, J.M.; Ezpeleta, J. An Iterative Method for Deadlock Prevention in FMS; Springer: New York, NY,

USA, 2000.
4. Dou, H.; You, D.; Wang, S.G.; Zhou, M.C. Designing liveness-enforcing supervisors for manufacturing systems by using maximally

good step graphs of Petri nets. IEEE Trans. Autom. Sci. Eng. 2024, 1–12. [CrossRef]
5. Abubakar, U.S.; Liu, G.Y. Adaptive supervisory control for automated manufacturing systems using borrowed-buffer slots. Inf.

Sci. 2024, 667, 1–15. [CrossRef]
6. Ezpeleta, J.; Tricas, F.; Garcia-Valles, F.; Colom, J.M. A banker’s solution for deadlock avoidance in FMS with flexible routing and

multiresource states. IEEE Trans. Robot. Autom. 2002, 18, 621–625. [CrossRef]
7. Du, N.; Hu, H.S.; Zhou, M.C. Robust deadlock avoidance and control of automated manufacturing systems with assembly

operations using Petri nets. IEEE Trans. Autom. Sci. Eng. 2020, 17, 1961–1975. [CrossRef]
8. Liu, G.Y.; Li, P.; Wu, N.Q.; Yin, L. Two-step approach to robust deadlock control in automated manufacturing systems with

multiple resource failures. J. Chin. Inst. Eng. 2018, 41, 484–494. [CrossRef]
9. Giua, A. Supervisory control of Petri nets with language specifications. In Control of Discrete-Event Systems; Springer:

Berlin/Heidelberg, Germany, 2013; pp. 235–255.

http://doi.org/10.1145/356586.356588
http://dx.doi.org/10.1016/0005-1098(95)00103-4
http://dx.doi.org/10.1109/TASE.2024.3450656
http://dx.doi.org/10.1016/j.ins.2024.120460
http://dx.doi.org/10.1109/TRA.2002.801048
http://dx.doi.org/10.1109/TASE.2020.2983672
http://dx.doi.org/10.1080/02533839.2018.1498023

Mathematics 2025, 13, 793 15 of 15

10. Attar, M.; Lucia, W. Data-driven robust backward reachable sets for set-theoretic model predictive control. IEEE Control. Syst.
Lett. 2023, 7, 2305–2310. [CrossRef]

11. Wang, S.G.; Wang, C.Y.; Zhou, M.C. Controllability conditions of resultant siphons in a class of Petri nets. IEEE Trans. Syst. Man
Cybern.—Part A Syst. Humans 2012, 42, 1206–1215. [CrossRef]

12. Hu, H.S.; Liu, Y.; Zhou, M.C. Maximally permissive distributed control of large scale automated manufacturing systems modeled
with Petri nets. IEEE Trans. Control. Syst. Technol. 2015, 23, 2026–2034.

13. Huang, Y.S.; Pan, Y.L.; Zhou, M.C. Computationally improved optimal deadlock control policy for flexible manufacturing systems.
IEEE Trans. Syst. Man Cybern.—Part A Syst. Humans 2012, 42, 404–415. [CrossRef]

14. Huang, Y.S.; Chung, T.H.; Su, P.J. Synthesis of deadlock prevention policy using Petri nets reachability graph technique. Asian J.
Control 2010, 12, 336–346. [CrossRef]

15. Yang, B.Y.; Hu, H.S. Maximally permissive deadlock and livelock avoidance for automated manufacturing systems via critical
distance. IEEE Trans. Autom. Sci. Eng. 2022, 19, 3838–3852. [CrossRef]

16. Ghaffari, A.; Rezg, N.; Xie, X.L. Design of a live and maximally permissive Petri net controller using the theory of regions. IEEE
Trans. Robot. Autom. 2003, 19, 137–141. [CrossRef]

17. Hu, H.S.; Liu, Y. Supervisor simplification for AMS based on Petri nets and inequality analysis. IEEE Trans. Autom. Sci. Eng. 2013,
11, 66–77. [CrossRef]

18. Pastor, E.; Cortadella, J.; Roig, O. Symbolic analysis of bounded Petri nets. IEEE Trans. Comput. 2001, 50, 432–448. [CrossRef]
19. Chen, Y.F.; Li, Z.W.; Khalgui, M.; Mosbahi, O. Design of a maximally permissive liveness-enforcing Petri net supervisor for

flexible manufacturing systems. IEEE Trans. Autom. Sci. Eng. 2011, 8, 374–393. [CrossRef]
20. Miner, A.S.; Ciardo, G. Efficient reachability set generation and storage using decision diagrams. In Lecture Notes in Computer

Science; Springer: Berlin/Heidelberg, Germany, 1999; Volume 1639, pp. 6–250.
21. Pastor, E.; Cortadella, J.; Roig, O.; Badia, R.M. Petri net analysis using Boolean manipulation. In Lecture Notes in Computer Science;

Springer: Berlin/Heidelberg, Germany, 1994; Volume 815, pp. 416–435.
22. Ma, Z.Y.; Tong, Y.; Li, Z.W.; Giua, A. Basis marking representation of Petri net reachability spaces and its application to the

reachability problem. IEEE Trans. Autom. Control. 2017, 62, 1078–1093. [CrossRef]
23. Dong, Y.F.; Li, Z.W.; Wu, N.Q. Symbolic verification of current-state opacity of discrete event systems using Petri nets. IEEE Trans.

Syst. Man Cybern. Syst. 2022, 52, 7628–7641. [CrossRef]
24. Uzam, M.; Li, Z.W.; Abubakar, U.S. Think-globally-act-locally approach for the synthesis of a liveness-enforcing supervisor of

FMSs based on Petri nets. Int. J. Prod. Res. 2016, 54, 4634–4657. [CrossRef]
25. Uzam, M.; Gelen, G.; Saleh, T.L. Think-globally-act-locally approach with weighted arcs to the synthesis of a liveness-enforcing

supervisor for generalized Petri nets modeling FMSs. Inf. Sci. 2016, 363, 235–260. [CrossRef]
26. Li, C.Z.; Chen, Y.F.; Li, Z.W.; Barkaoui, K. Synthesis of liveness-enforcing Petri net supervisors based on think-globally-act-locally

approach and vector covering for flexible manufacturing systems. IEEE Access 2017, 5, 16349–16358. [CrossRef]
27. Li, C.Z.; Li, Y.Y.; Chen, Y.F.; Wu, N.Q.; Li, Z.W.; Ma, P.Y.; Kaid, H. Synthesis of liveness-enforcing Petri net supervisors based on a

think-globally-act-locally approach and a structurally minimal method for flexible manufacturing systems. Comput. Inform. 2022,
41, 1310–1336. [CrossRef]

28. Murata, T. Petri nets: Properties, analysis and applications. Proc. IEEE 1989, 77, 541–580. [CrossRef]
29. Ezpeleta, J.; Colom, J.M.; Martinez, J.A Petri net based deadlock prevention policy for flexible manufacturing systems. IEEE Trans.

Robot. Autom. 1995, 11, 173–184. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/LCSYS.2023.3286776
http://dx.doi.org/10.1109/TSMCA.2011.2170419
http://dx.doi.org/10.1109/TSMCA.2011.2164241
http://dx.doi.org/10.1002/asjc.188
http://dx.doi.org/10.1109/TASE.2021.3138169
http://dx.doi.org/10.1109/TRA.2002.807555
http://dx.doi.org/10.1109/TASE.2013.2288645
http://dx.doi.org/10.1109/12.926158
http://dx.doi.org/10.1109/TASE.2010.2060332
http://dx.doi.org/10.1109/TAC.2016.2574120
http://dx.doi.org/10.1109/TSMC.2022.3151695
http://dx.doi.org/10.1080/00207543.2015.1098785
http://dx.doi.org/10.1016/j.ins.2015.09.010
http://dx.doi.org/10.1109/ACCESS.2017.2720630
http://dx.doi.org/10.31577/cai_2022_5_1310
http://dx.doi.org/10.1109/5.24143
http://dx.doi.org/10.1109/70.370500

	Introduction
	Computation and Analysis of an RG
	Examples
	Conclusions
	Appendix A. Preliminaries
	Appendix A.1. Petri Nets
	Appendix A.2. Analysis of Reachability Graph

	References

