

3 Asymmeetric carbon atom, stereoisomerism, optical activity, enantiomers, hemiacetal structure, B and a isomers, specific rotation.
4 Osazone formation, effects of acids and alkalis on monosaccaccharides, enolization, reduction of sugars, oxidation products, amino and deoxy sugars, phosphate derivatives.
5 Glycosides, properties of some monosaccharides, disaccharides, maltose and trehalose type glycosidic bonds, properties of maltose, lactose, sucrose and cellobiose, homo and heteropolysaccharides, structur and enzymatic degradation of starch, introduction of other polysaccharides
6 Digestion of Carbohydrates
7 Digestion and absorption of Carbohydrates
8 Carbohydrate metabolism-I
9 Carbohydrate metabolism-II
10 Carbohydrate metabolism-III
11 Carbohydrate metabolism disorders-I
12 Carbohydrate metabolism disorders-II
13 Nucleic acids
14 Properties of DNA and RNA

Course Learning Resources

1. Champe PC, Harvey RA, Ferrier DR (2010). Biochemistry (Lippincott's Illustrated Reviews Series).

Lippincott Williams \& Wilkins.
2. Sözbilir NB, Bayşu N. (2008). Biyokimya. Öncü Basımevi, Ankara
2.
3.
4.

ASSESSMENT CRITERIA

| Work Activities During the Semester | Number | Contribution |
| :--- | :---: | :---: | :---: |
| Homework | 1 | $\% 30$ |
| Practice | | |
| Forum/ Discussion Application | | |
| Short Exam (Quiz) | 2 | $\% 35$ |
| Ratio Of Semester Studies To Semester Success (\%) | | $\% 40$ |
| Ratio of Final to Success (\%) | | $\% 60$ |
| Total | | $\% 100$ |

COURSE WORKLOAD TABLE

Activity	Total Weeks	Duration (Weekly Hours)	Total Workload
Theory	14	4	56
Practice			
Forum/ Discussion Application			32
Reading	4	8	

